
COURSE DESCRIPTION CARD - SYLLABUS


Course name 
Frontend Development 

Course 

Field of study 
Computing 
Area of study (specialization) 
Software Engineering 
Level of study 
Second-cycle studies 
Form of study 
full-time 

Year/Semester 
2/3 
Profile of study 
general academic 
Course offered in 
English 
Requirements 
elective 

Number of hours 

Lecture 
30 

Laboratory classes 
30 

 

Number of credit points  5 

Lecturers 
Responsible for the course/lecturer: 
Marcin Borowski, BEng, PhD 
email: mborowski@cs.put.poznan.pl 
phone: 61 665 3032 
faculty: Faculty of Computing and 
Telecommunications 
address: Piotrowo 2, 60-965 Poznań 

Responsible for the course/lecturer: 
Marcin Borowski, BEng, PhD 
email: mborowski@cs.put.poznan.pl 
phone: +48 61 665 30 32 
faculty: Faculty of Computing and 
Telecommunications 
address: Piotrowo 2, 60-965 Poznań 

Prerequisites 
The student starting this course should have basic knowledge of structured and object-
oriented programming, programming using the MVC scheme, basic knowledge of internet 
technologies (HTML, CSS, JS), and basic knowledge of database design. 


Should have the ability to solve basic problems related to the process of designing IT systems 
and the ability to obtain information from the indicated sources. 


Should also understand the need to expand their competences / be ready to cooperate within 
the team. Moreover, in terms of social competences, the student must present such attitudes 
as honesty, responsibility, perseverance, cognitive curiosity, creativity, personal culture, 
respect for other people. 



1



Course objective


1. Provide students with basic knowledge about technologies used in the construction of web 
applications, in particular frontend techniques, in the field of design approaches, 
technology selection and implementation (including solutions for mobile devices).


2. Developing students' skills in solving problems related to the design of web applications also 
operating in real time (reactivity), the use of frameworks, libraries and other tools 
supporting the construction of websites and web applications.


3. Shaping students' teamwork skills as well as independence in solving problems.


Course-related learning outcomes 
Knowledge 
Student:


• has advanced and in-depth knowledge of Internet technologies, the theoretical foundations 
of their building, as well as the methods, tools, and programming environments used to 
implement them


• has advanced detailed knowledge of front-end technologies


• knows advanced methods, techniques, and tools used to solve complex engineering tasks 
while building web applications


Skills 
Student:


• can assess the usefulness and the possibility of using new achievements and new IT products 
(dedicated tools, dedicated languages, etc.)


• can - when formulating and solving engineering tasks - integrate knowledge from various 
areas of computer science and apply a system approach, also taking into account non-
technical aspects


• can use information and communication techniques used in the implementation of front-end 
applications


• can assess the usefulness of methods and tools for solving an engineering task consisting in 
the construction or evaluation of an IT system or its components, including the limitations 
of these methods and tools - as a result, can choose the appropriate application 
development technology depending on the requirements


• can - following the given specification - design and implement complex internet 
applications - at least in part, using appropriate methods, techniques, and tools, including 
adapting existing or developing new tools for this purpose



2



Social competences 
Student:


• understands that in computer science knowledge and skills very quickly become obsolete, 
especially internet technologies


• understands the need to use the latest technology achievements and knows examples and 
understands the causes of malfunctioning IT systems that may lead to serious financial, 
image, or social losses


Methods for verifying learning outcomes and assessment criteria 
Learning outcomes presented above are verified as follows:


Formative assessment


a. Lecture: based on activity during the interactive parts of the lectures;


b. laboratory: based on the assessment of the current progress in the implementation of 
tasks;


Summative assessment


a. Lecture:


• assessment of the presentation prepared by the student on the chosen technique, library, or 
framework used in building web applications;


b. Laboratory:


• verification of the assumed learning outcomes realized by


• students' assessment and defense of the prepared tasks - 5 small projects;


When assigning the final grade, the student may obtain an increase in grade for:


• discussing additional aspects of the presented issues, not presented during classes;


• using skills and knowledge from outside the study program to solve the tasks performed;


• help in improving teaching materials related to the subject;


Programme content


Lecture:


The lecture program covers the following topics: the HTTP communication protocol. 
Introduction to node.js technology Building simple servers of popular network services (echo, 
chat, HTTP). Introduction to the Express.js framework. Introduction to the AngularJS 


3



framework. Introduction to the ReactJS framework. Introduction to the Meteor.js framework. 
Introduction to the Svelte library. Overview of supporting tools such as Grunt, Gulp, Webpack, 
Rollup, SASS, Less, Postcss. Languages for defining application templates and components 
EJS, Jade, HAML, JSX.


Laboratory:


Laboratory classes are conducted in the form of fifteen 2-hour exercises, held in the 
laboratory. Classes are carried out independently by students. The laboratory program covers 
the following topics: Preparation of page templates and component views using HTML5, CSS, 
LESS, SASS, and the use of frameworks and component libraries (including Bootstrap, 
SemanticUI, Tailwindcss). Installation and configuration of the node.js environment. Running 
applications are written in node.js. Simple service servers. Implementation of simple 
applications in the Express.js framework with AngularJS and MongoDB, ReactJS, Meteor.js, 
Svelte / Sapper. Examples of the use of supporting tools and modules for node.js: Gulp, 
Webpack, Nodemon, Rollup, etc.


Teaching methods


Lecture: multimedia presentation, illustrated with examples given on the board.


Laboratory exercises: multimedia presentation, presentation illustrated with examples given 
on the whiteboard, live coding, and carrying out the tasks given by the teacher - practical 
exercises.


Bibliography


Basic 
Technical documentation of the mentioned tools available on the Internet


Additional 

Breakdown of average student's workload


Hours ECTS

Total workload 100 5

Classes requiring direct contact with the teacher 60 (30l, 30e) 3.4

Student's work (literature studies; preparation for laboratory 
classes; participation in consultations; preparation of programs, 
launching, and testing; preparation of the final presentation and 
its presentation)

40 1.6


4


